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The phase shift of neutrons passing through a sample is usually determined by

the sample’s index of refraction based on the coherent neutron scattering length.

If the sample has a perfect crystal structure there are, however, additional phase

effects due to Bragg diffraction. While Bragg peaks in the diffracted direction

are very sharp on the angular scale, the phase of the transmitted beam is

influenced on a much wider angular range in the order of degrees around the

Bragg condition. The magnitude of this effect is in the order of 10�4 of the

refractive phase and clearly visible in interferometry measurements on a perfect

silicon sample. In order to calculate the effect, the exact solution is derived for

the two-beam case of the dynamical diffraction theory for arbitrary Bragg-plane

orientation and arbitrary deviations from the Bragg condition. Even far off any

Bragg condition, a residual phase correction remains which is identified as a

local field correction.

1. Introduction

The coherent neutron scattering length bc is an important

parameter for various kinds of scattering measurements and

can be determined only experimentally for most nuclides. bc

enters in the index of refraction n or the quantum mechanical

phase shift � of neutrons in matter as

n ¼ 1� �2Nbc=ð2�Þ; � ¼ ��NbcD; ð1Þ

where � is the neutron wavelength, N the number density and

D the thickness of the sample slab. Neutron interferometry

(Rauch & Werner, 2000) is one of the most sensitive methods

for bc determination, especially if high-purity samples with

D >
� 1 cm are available. These criteria are ideally met by

perfect crystals and the most precise bc value determined

so far is that of silicon, obtained by the interferometric

measurement of a perfect crystal silicon sample (Ioffe et al.,

1998). The accuracy was in the order of 10�4. During our work

to improve this method (Lemmel & Wagh, 2010) we have

noticed that the perfect crystal structure creates additional

phase effects due to Bragg diffraction. Even if the beam angle

is several degrees off any Bragg condition, the phase shift of

the sample might be changed by about 10�4. In the work of

Ioffe et al. (1998) two slightly different experimental results

are given which have been measured independently with

different setups and wavelengths. The discrepancy is larger

than the individual errors and it seems likely to us that it has

been caused by Bragg diffraction.

Crystalline samples are described by the theory of dyna-

mical diffraction. The standard dynamical theory was devel-

oped in the 1920s to describe Bragg diffraction of X-rays,

reviewed in Batterman & Cole (1964) and Authier (2006).

Later on, the theory was adapted to neutrons (cf. e.g. Baus-

piess et al., 1976; Bonse & Graeff, 1977; Petrascheck, 1976) and

extended to special cases of grazing incident and exit angles,

reviewed in Authier (1998, 2006). In all these works emphasis

was given to diffraction angles in the vicinity of the Bragg

condition where the diffracted-beam intensity does not vanish.

As a consequence, approximations for small Bragg-angle

deviations were used and the phase effects that occur for

larger Bragg-angle deviations in transmission were obscured

and underestimated for a long time. The first detailed

description was our exact calculation of the symmetrical Laue

case (Lemmel, 2007). Now we present the calculation for the

general case of arbitrary Bragg-plane orientation and show

how to use it to correct for diffraction effects in scattering-

length measurements.

In x2 we examine the transmitted phase theoretically and

find a very general approximation for large Bragg-angle

deviations which is valid for any Bragg-plane orientation. The

approximation is derived from the exact symmetric Bragg and

Laue formulas and then numerically checked against the

general exact solution of the two-beam case given in the

Appendix. In x3 we apply the theory to our particular

experimental setup, taking the beam divergence and wave-

length distribution into account. We determine all possible

Bragg diffractions in the crystalline sample, apply the phase

corrections and compare the results with our alignment scans

where we rotated and tilted the sample into various Bragg

conditions. Results and conclusions are discussed in xx4 and 5.

http://scripts.iucr.org/cgi-bin/cr.cgi?rm=pdfbb&cnor=td5016&bbid=BB18
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2. Plane-wave solutions of the two-beam case

We assume a non-absorbing sample with perfect crystal

structure. The two-beam case of the dynamical diffraction

theory describes Bragg diffraction on a single set of reflecting

planes. The two beams refer to the forward and diffracted

directions in the crystal. Other sets of Bragg planes as well as

higher-order reflections are neglected. Then the solution of

the Schrödinger equation inside the crystal leads to two

coupled equations (cf. e.g. Bonse & Graeff, 1977; Rauch &

Werner, 2000):

K2

k2
� 1þ

V0

E

� �
u ¼ �

V�H

E
uH; ð2Þ

K2
H

k2
� 1þ

V0

E

� �
uH ¼ �

VH

E
u: ð3Þ

k, K and H are the absolute values of k, K and H, respectively,

where k denotes the incident wavevector outside the crystal, K

the forward wavevector inside the crystal and KH ¼ KþH

the wavevector in the diffracted direction. E denotes the

neutron energy E ¼ h- 2k2=ð2mÞ with the neutron mass m. V0

denotes the neutron optical potential V0 ¼ 2�h- 2Nbc=m with

the coherent scattering length bc and the atom number density

N of the sample material. VH denotes the diffracting potential

and depends on H and the crystal structure. For a silicon

crystal and the Miller indices h, j, l we get

VH ¼

(
V0 if h; j; l are all even and

hþ jþ l divisible by 4;
V0ð1þ iÞ=2 if h; j; l are all odd:

ð4Þ

We consider a crystal slab with parallel front and back

surface and thickness D (Fig. 1). The surfaces are perpendi-

cular to the z axis. The wavevectors as well as the reciprocal-

lattice vector H lie in the x=z plane. With the continuity

condition Kx ¼ kx and the abbreviations v0;H ¼ V0;H=E,

H ¼ H=k, K ¼ K=k, Kx;z ¼ Kx;z=k, kx;z ¼ kx;z=k,

�z ¼ ðk
2

z � v0Þ
1=2 we obtain from equations (2) and (3)

jvHj
2
¼ K

2

z � �
2
z

� �
K

2

z þ 2HzKz þH
2
þ 2Hxkx � �

2
z

� �
; ð5Þ

which is a fourth-order (quartic) equation in Kz. The wave-

vectors K and KH and their amplitudes u and uH are to be

determined.

The transmitted component has the amplitude t and the

same wavevector as the incident wave kT ¼ k. We denote the

diffracted wavevector exiting on the front surface (Bragg case)

by kB with the amplitude b and the diffracted wavevector

exiting on the back surface (Laue case) by kL with the

amplitude l. Inside the crystal the wavevector may be altered

only by the reciprocal-lattice vector H. The kx component is

conserved on both surfaces and the kz components of the

exiting beams follow from energy conservation. Thus the

vectors outside the crystal are given by

k ¼
kx

kz

� �
; kL ¼

kx þHx

kLz

� �
; kB ¼

kx þHx

�kLz

� �
; ð6Þ

kLz ¼ ½k
2
� ðkx þHxÞ

2
�
1=2: ð7Þ

First we solve the symmetric Bragg and Laue cases for large

violations of the Bragg condition. We make approximations

for small crystal potentials and we neglect surface reflections.

Then we show that the results are also valid for the asymmetric

cases by comparing them numerically with the general exact

solution of the two-beam case given in the Appendix.

2.1. Symmetric Laue case

The symmetric Laue case is described in detail in Lemmel

(2007). Let us summarize and improve the results. In the

symmetric Laue case Hx ¼ �H and Hz ¼ 0 and the solution

of equation (5) reads

Kz1;2;ð3;4Þ ¼ ð�Þf�
2
z þ jvHj½��L � ð1þ �

2
LÞ

1=2
�g

1=2
ð8Þ

with

�L ¼ �
H2

jvHjk
2

kx

H
�

1

2

� �
: ð9Þ

�L is a dimensionless parameter specifying the deviation from

the Bragg condition. We neglect the solutions Kz3;4 ¼

�f. . .g1=2which refer to the components reflected on the back

surface, moving in a negative z direction. With the ansatz

 I ¼ expðikrÞ; z � z0; ð10Þ

 II ¼ u1 expðiK1rÞ þ uH1 exp½iðK1 þHÞr� þ u2 expðiK2rÞ

þ uH2 exp½iðK2 þHÞr�; z0 � z � z0 þD; ð11Þ

 III ¼ tL expðikrÞ þ lL expðikLrÞ; z0 þD � z ð12Þ

and with the continuity conditions  I ¼  II at z ¼ z0 and

 II ¼  III at z ¼ z0 þD we obtain (Lemmel, 2007)

tL ¼ expð�ikzDÞ

�
expðiKz1DÞ þ expðiKz2DÞ

2
þ

�L

ð1þ �2
LÞ

1=2

�
expðiKz1DÞ � expðiKz2DÞ

2

�
; ð13Þ

lL ¼ expð�ikzDÞ exp½iðkz � kLzÞðDþ z0Þ�
VH

V�H

� �1=2

�
�1

ð1þ �2
LÞ

1=2

expðiKz1DÞ � expðiKz2DÞ

2
: ð14Þ

In order to separate dynamical diffraction effects from the

normal phase shifter behaviour we factorize the transmission

factor into a refractive and a diffractive part,
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Figure 1
Incident and exit wavevectors for the symmetric Laue (a) and Bragg (b)
case.



tL ¼ tref tdifL; ð15Þ

tref ¼ expði�refÞ; ð16Þ

�ref ¼ Dð�z � kzÞ; ð17Þ

�z ¼ ðk
2
z � k2v0Þ

1=2: ð18Þ

Then equations (13) and (14) become, with a first-order

expansion of ðKz1;2 � �zÞ by vH which is in the order of 10�6,

tL ¼ tref expð�iAL�LÞ

(
cos ALð1þ �

2
LÞ

1=2
� 	

þ
i�L

ð1þ �2
LÞ

1=2

� sin ALð1þ �
2
LÞ

1=2
� 	)

; ð19Þ

lL ¼ tref expð�iAL�LÞ
exp½iðkz � kLzÞðDþ z0Þ�

ið1þ �2
LÞ

1=2

� sin ALð1þ �
2
LÞ

1=2
� 	 VH

V�H

� �1=2

; ð20Þ

AL ¼
Dk2jvHj

2�z

¼
DmjVHj

h- 2�z

: ð21Þ

Note that the AL defined here contains the refracted vector

component �z inside the crystal whereas the AH of

Lemmel (2007) or other papers contains the incident

component kz. This way the result is more elegant and even

more accurate than our previous result (Lemmel, 2007). In

particular the transition tL ! tref for large j�Lj is more

obvious: if ð1þ �2
LÞ

1=2
! j�Lj the term in braces in equation

(19) cancels with the exponential term and only tref is left.

The Laue result is plotted in Fig. 2 (blue curves).

2.2. Symmetric Bragg case

In the symmetric Bragg case Hx ¼ 0 and Hz ¼ �H and the

solution of equation (5) reads

Kz1;2;ð3;4Þ ¼
H

2
�
jvHjk

2

H
½ð�ð	ÞB Þ

2
� 1�1=2; ð22Þ

�	B ¼
H2

jvHjk
2

1

2
	
�z

H

v2
Hk4

H2�2
z

þ 1

� �1=2
" #

: ð23Þ

Again we neglect the solutions

Kz3;4 ¼ . . . ð�þB Þ
2 . . . which refer to the

components reflected on the inside of

either surface. In addition, we neglect

the v2
H term in the square root of �B as

vH is in the order of 10�6.

Kz1;2 ¼
H

2
�
jvHjk

2

H
ð�2

B � 1Þ1=2; ð24Þ

�B ¼ �
H2

jvHjk
2

�z

H
�

1

2

� �
: ð25Þ

In the ansatz we distinguish between

forward- and backward-moving wave

components denoted by f and b indices,

respectively,

 If ¼ expðikrÞ;  Ib ¼ bB expðikBrÞ; z � z0; ð26Þ

 IIf ¼ u1 expðiK1rÞ þ u2 expðiK2rÞ;

 IIb ¼ uH1 exp½iðK1 þHÞr� þ uH2 exp½iðK2 þHÞr�;

z0 � z � z0 þD; ð27Þ

 IIIf ¼ tB expðikrÞ;  IIIb ¼ 0; z0 þD � z: ð28Þ

The continuity conditions read  If;b ¼  IIf;b at z ¼ z0 and

 IIf;b ¼  IIIf;b at z ¼ z0 þD, and we obtain

tB ¼ tref

expðiAB�BÞ

cos ABð�
2
B � 1Þ1=2

� 	
þ ½i�B=ð�

2
B � 1Þ1=2

� sin ABð�
2
B � 1Þ1=2

� 	 ;
ð29Þ

bB ¼
ðVH=V�HÞ

1=2

��B þ ið�2
B � 1Þ1=2 cot ABð�

2
B � 1Þ1=2

� 	 ; ð30Þ

AB ¼
Dk2jvH j

H
: ð31Þ

The transmission factor tB converges to tref for large j�Bj as the

exponential cancels with the numerator if ð�2
B � 1Þ1=2

! j�Bj.

The Bragg result is plotted in Fig. 2 (red curves). Fig. 3

illustrates the total and the refractive phase in a larger angular

range around the Bragg condition. Different Bragg-plane

orientations are compared, the asymmetric cases are calcu-

lated in the Appendix.

2.3. Deviation parameters

The dimensionless parameters �L and �B specify the

deviation from the Bragg condition. Their definitions [equa-

tions (9) and (25), respectively] were motivated by the

simplification of the symmetric case formulas. Nevertheless,

we can combine them into a single definition as in the Laue

case kx ¼ �x ¼ jjHj=H and in the Bragg case �z ¼ jjHj=H,

� ¼ �
H2

jvHjk
2

jH

H2
�

1

2

� �
: ð32Þ

This simple generalization to arbitrary Bragg-plane orienta-

tion is useful for our further calculations. However, it should

not be used to calculate the Darwin width for asymmetric

cases, which would then turn out to be narrower than �1.
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Figure 2
Argument value (solid lines, left axis) and absolute value (dotted lines, right axis) of the
transmission factor t for the symmetrical Bragg case (red) and Laue case (blue) as a function of
deviation parameters �� (lower scale) or � (upper scale) closely around the Bragg condition. In the
Bragg case no intensity is transmitted around �� ¼ 0 (Darwin plateau). The Pendellösung
oscillations in the absolute value come together with little step-like features in the argument value.
The thin black lines show the phase averaged over the Pendellösung oscillations [cf. text and
equations (45), (46)]. The plot has been calculated for a 220 silicon crystal of thickness 0.5 mm and
wavelength � ¼ 2.7155 Å.



In Figs. 2 and 3 we show both the � and �� scale. By

convention a positive ��, i.e. an increase of the angle between

beam and lattice planes, corresponds to a negative �,

� ’ �
�� sinð2�BÞ

jvHj
for j�� ¼ � � �Bj<� 1
: ð33Þ

This relation between � and �� does not include any refraction

correction. Usually �B is defined by Bragg’s law,

k sin �B ¼ H=2, relating the outside vector k to the inside

reciprocal-lattice vector H. Then the relation between � and ��
becomes more complex when refraction on the surface is

taken into account. As a consequence, the Darwin plateau of

the Bragg case (�1<�< 1) is not centred around the Bragg

angle �B. Only in the symmetric Laue case �� ¼ 0 corresponds

to � ¼ 0. Here we try to separate the effects of refraction and

diffraction and to compare Bragg and Laue cases. We there-

fore apply Bragg’s law on the refracted wavevector j inside

the crystal � sin �B ¼ H=2 with � ¼ kð1� v0Þ
1=2. The inside

Bragg angle �B is then converted to the outside Bragg angle

�B by the law of refraction. We equate the tangential

components of the inner and outer vectors, kx ¼

k cosð	þ �BÞ ¼ �x ¼ � cosð	þ�BÞ, with 	 denoting the

angle between Bragg planes and surface (cf. Fig. 3),

cosð�B þ 	Þ ¼ ð1� v0Þ
1=2 cosð�B þ 	Þ; ð34Þ

�B ¼ �	þ arccos ð1� v0Þ
1=2 cosð	þ�BÞ

� 	
; ð35Þ

�B ¼ arcsin
H

2kð1� v0Þ
1=2
: ð36Þ

With this definition of �B, equation (33) is valid for all Bragg-

plane orientations and both the Laue and the Bragg curves are

centred around �� ¼ 0 as shown in Figs. 2 and 3.

We express � by a newly defined parameter �� which we will

use later on to integrate over the k distribution of the beam,

� ¼ �
H2

k2jvHj
��; ð37Þ

�� ¼
jjHj

H2
�

1

2
: ð38Þ

�� can be understood in the following way. The Bragg condi-

tion is exactly fulfilled if the projection of the refracted

wavevector into the H direction equals H=2. �� is the deviation

of this projection from the ideal value divided by H to make it

dimensionless. The value range of �� is given by

�
1

2
� �� �

�

H
�

1

2
: ð39Þ

The lower limit is ensured by the modulus in equation (38) and

is due to the fact that a sign change of jH just corresponds to a

wave falling from the other side onto the Bragg planes. At the

limit j and H are perpendicular. The upper limit is determined

by the general vector inequality jjHj � �H. In this limit j and

H are collinear.

2.4. Diffractive phase

Fig. 2 shows the phase argðtÞ and the modulus absðtÞ of a

transmitted plane wave close to the Bragg condition for the

symmetric Bragg and Laue cases. The modulus (dotted line)

shows the well known Pendellösung oscillations and vanishes

in the Bragg case in the central region (Darwin plateau). The

argument value also shows Pendellösung features in the form

of step-like shapes. These features have already been

described for the symmetric Laue case (Lemmel, 2007) and

have been verified experimentally (Springer et al., 2010;

Springer, 2009) using a highly sophisticated setup. The sample

crystal had the same structure and orientation as the inter-

ferometer crystal (nondispersive configuration) and a second

sample in the other interferometer path compensated for

defocusing and for the steep phase slope. In a usual setup,

however, the sample crystal has different crystal structure and/

or orientation than the interferometer crystal (dispersive

configuration). Then a broad range on the � or �� scale is

excited, much wider than the Darwin width, and the trans-

mission factor has to be averaged over this distribution. In the

near range around the Bragg condition the phase slope is very

steep and thus the phase spreads over several orders of 2�
within the beam divergence. Then the interference contrast

vanishes, meaning that the near range is not accessible

experimentally. In this paper we therefore focus on the far

range and apply a number of approximations to simplify the

results for this range.

We define the diffractive phase �dif as the deviation of the

total phase from the refractive phase,

�dif ¼ �� �ref ¼ argðt=trefÞ: ð40Þ
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Figure 3
Argument value of the transmission factor as a function of misset angle ��
for different Bragg-plane orientations 	. For large j��j the argument
values approach the refractive phases �ref shown by the dashed lines. The
plot has been calculated for a 220 silicon crystal of 1 mm thickness. The
wavelength � ¼ 2.7155 Å has been chosen such that the symmetrical
Bragg (	 = 0
) and Laue (	 = 90
) cases have incident angles of the same
magnitude (
 ¼ 	 45
). Thus the Bragg and Laue cases can be directly
compared having the same �ref at �� ¼ 0. Note that �ref is in the order of
�12:7� 2� and that all phases are plotted modulo 2�. The asymmetric
Bragg and Laue cases of 	 = 30
 and 	 = 60
, respectively, have an
incident angle of 
 ¼ 	 15
 and therefore a smaller phase shift
magnitude, �ref ¼ �9:3� 2�.



In a previous paper (Springer et al., 2010) we referred to it as

the ‘Laue phase’ since it was measured in Laue geometry.

However, it appears equally in Bragg geometry so the name

‘diffractive phase’ seems more appropriate.

Approximation 1. We average the transmission factors tL

[equation (19)] and tB [equation (29)] over the Pendellösung

oscillations as they cannot be resolved anyway with a broad �
distribution. tL oscillates as a function of AL with the two

frequencies �1 ¼ � and �2 ¼ ð1þ �
2Þ

1=2. The beating between

these frequencies creates the Pendellösung oscillations. We

average tL around some A0 over one beating period given by

�AL ¼ 2�=ð�1 þ �2Þ. In the Bragg case we average the

expression 1=tB with similar considerations. The results are

(with A0 replaced by AB;L after integration)

htLi ¼
1

�AL

ZA0þ�AL=2

A0��AL=2

tL dAL ð41Þ

¼ tref

j�j

ð1þ �2Þ
1=2

j�j þ ð1þ �2Þ
1=2

�j�j þ ð1þ �2Þ
1=2

� sinc 2�� �j�j þ ð1þ �2
Þ

1=2
� 	
 �

� exp iAL ��þ sign ð�Þð1þ �2
Þ

1=2
� 	
 �

; ð42Þ

htBi ¼
1

�AB

ZA0þ�AB=2

A0��AB=2

1

tB

dAB

0
B@

1
CA
�1

ð43Þ

¼ tref

ð�2 � 1Þ1=2

�j�j j�j þ ð�2 � 1Þ1=2
� 	2

=sinc 2�� j�j � ð�2 � 1Þ1=2
� 	
 �

� exp �iAB ��þ signð�Þð�2 � 1Þ1=2
� 	
 �

: ð44Þ

We can directly read out the resulting diffractive phase:

h�difLi ¼ arg
htLi

tref

¼ AL ��þ signð�Þð�2
þ 1Þ1=2

� 	
; ð45Þ

h�difBi ¼ arg
htBi

tref

¼ AB �� signð�Þð�2
� 1Þ1=2

� 	
: ð46Þ

These functions are shown by the thin lines in Fig. 2.

Approximation 2. We make a first-order series expansion of

h�difL;Bi by 1=� to simplify the result for large j�j,

h�difL;Bi �!
j�j�1 AL;B

2�
: ð47Þ

A similar expression for the X-ray case can be found in

Authier (2006), x5.5.6, where it has been derived by geome-

trical considerations on the dispersion surfaces.

So far we have described the symmetric cases. The solution

for the asymmetric cases is presented in the Appendix,

where the general two-beam case is solved without further

approximations, even taking surface reflection into account.

Since the general result is quite bulky we want to discuss

here only the resulting plots and thus compare it numerically

with the symmetric cases. Fig. 4 shows the diffractive

phase over the whole possible range of �� [cf. equation

(39)]. The positive and negative �� branches are shown in

separate plots because of the logarithmic scale. The far-

range approximation h�difLi [equation (47)] derived for the

symmetric Laue case is plotted by the black line. The

coloured curves show the exact solution for different

Bragg-plane orientations. They separate for small j��j but

converge to the black line in the far range. The symmetric

Laue solution argðtLÞ [equation (19)] is not distinguishable

from the exact Laue solution (blue line). The symmetric

Bragg solution argðtBÞ [equation (29)] differs from the exact

solution in the very far range, shown by the thin red line. We

conclude that the symmetric Laue formula of the diffractive

phase serves as an excellent far-range approximation for all

Bragg-plane orientations and denote it further on by

h�difi � h�difLi.

Remark on Fig. 4. When calculating the quotient �dif=�ref ¼

ð�� �refÞ=�ref one needs to know the 2� order of the phases.

This is no problem for �ref given directly by equation (17) but

� ¼ argðtÞ is defined only modulo 2�. Accordingly, the plot of

argðtÞ in Fig. 2 shows several 2� jumps. In Fig. 4 we start the

evaluation of � at some j��j large enough so that � ’ �ref or

�dif ’ 0. When approaching �� ¼ 0 we correct for each 2�
jump introduced by the arg function and thus obtain a

continuous curve of �. We do this for the positive and negative

side of �� and thereby accumulate all 2� jumps at �� ¼ 0. This

is convenient for our far-range calculations but be aware that

the complex function t is continuous also at �� ¼ 0. All jumps,

wherever they are put, are multiples of 2� and have no

physical meaning.
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Figure 4
Relative diffractive phase �dif=�ref as a function of deviation parameter
�� (lower scale) or Bragg-angle deviation �� (upper scale) for different
Bragg-plane orientations 	. The two figures show the positive and
negative branch of ��, respectively. In the far range (j��j >� 0.001
) the
expression is independent of 	 and inversely proportional to �� (black
line), see text. The numerical parameters are the same as in Fig. 3.



We can write the total phase shift as � ¼ �refð1þ h�reliÞ by

defining the relative diffractive phase:

h�reli ¼
h�difi

�ref

¼
AL

2��ref

¼
k2jvHj

4��zð�z � kzÞ
: ð48Þ

The sample thickness D contained in AL and �ref cancels, and

with �z [equation (18)] and a first-order expansion by v0 we

obtain

h�reli ’ �
jvHj

v02�
¼

B

��
; B ¼

jVHj
2 m

V0 h- 2H2
: ð49Þ

B contains only crystal parameters and does not depend on

the beam.

Approximation 3. We set the modulus of t to unity. The

intensity dip of t close to the Bragg condition reduces the

intensity of a divergent beam in dispersive geometry only by a

few per mille and the phase in this region is smeared out

anyway.

Approximation 4. We describe the �� distribution (i.e. beam

divergence) by a Lorentzian in order to get a solvable integral

for the convolution,

gð��Þ ¼
1

��� 1þ ð��=��Þ
2

� 	 : ð50Þ

The intensity of a single plane-wave component in the O beam

of the interferometer reads for a non-absorbing sample

Ið��Þ ¼ 1þ cos �dif þ �ref � ’ð Þ ð51Þ

¼ 1þ cos
B

��
þ 1

� �
�ref � ’

� �
; ð52Þ

where ’ denotes the phase contribution of the auxiliary phase

flag. Averaged over the �� distribution we get (with ��0

renamed to �� after integration)

I ¼
R1
�1

gð��� ��0ÞIð��Þ d�� ð53Þ

¼ 1þ exp
�
�B��
��2þ�2

�

j�refj

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

contrast

cos
h� B��

��2þ�2
�

þ 1
�
�ref|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

measured phase

�’
i
:

ð54Þ

Let us summarize the result. Given a monocrystalline

sample and a beam missing the Bragg condition in the crystal

by �� with a distribution width of ��, then the interference

contrast c and the measured phase �meas are given by

�meas ¼ �ref 1þ
B��

��2 þ �2
�

� �
; ð55Þ

c ¼ exp �j�refj
B��

��2 þ �2
�

� �
; ð56Þ

with B depending only on crystal parameters [cf. equation

(49)]. The orientations of beam and lattice planes with respect

to the surface do not enter at all, only the orientation of beam

and lattice planes to each other is important, described by ��.
Typical plots of contrast and diffractive phase for realistic

beam divergences are shown in Fig. 5.
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Figure 5
Relative diffractive phase (solid lines, left scale) and interference contrast
(dotted lines, right scale) obtained by the convolution of the plane-wave
formula (brown curve) with the angular beam distribution, calculated for
two typical beam divergences �� as indicated in the figure. The plot was
calculated for a 220 silicon crystal of 18 mm thickness and wavelength
� ¼ 2.36 Å. Thinner crystals would create a smaller contrast dip, but the
relative diffractive phase �dif=�ref would not change.

Figure 6
Setup of the sample (s) in the interferometer (i). The sample is a silicon
perfect crystal with the indicated crystal orientation (c). It is aligned by
rotation " and tilt � (a). The beam (b) enters on the left with vertical
divergence � and horizontal divergence �
. After Bragg diffraction on
the interferometer planes (p) only the vertical divergence remains for a
specific wavelength while the horizontal divergence is reduced to the
Darwin width.



The two-beam case takes only a single set of Bragg planes

into account. The exact way of calculating the combined effect

of n sets of Bragg planes would require an ðnþ 1Þ-beam case.

In the present approach we assume that this is necessary only

in the near range close to the Bragg conditions and not in the

far range where the diffractive effects are small. Then we can

simply sum up the individual diffractive phases and multiply

the contrast values.

3. Phase calculation for a real setup

We recently developed a new technique for high-precision

scattering-length measurements by neutron interferometry

(Lemmel & Wagh, 2010). The setup is shown in Fig. 6. A dual

phase shifter is used which is crossed twice by the beam.

Thereby the effective thickness and the resulting phase shift

are doubled while the lateral beam displacement due to

refraction is compensated and the interferometer is always

kept focused. A nondispersive sample orientation is used (not

to be confused with the nondispersive crystal orientation

mentioned above) as illustrated in Fig. 6. The sample surface

(s) is parallel to the lattice planes (p) of the interferometer.

This way all wavelength components in the beam undergo the

same phase shift (Petrascheck, 1987; Ioffe et al., 1998; Vrána et

al., 2000; Lemmel & Wagh, 2010). Such a dual phase shifter

setup allows one to create phase shifts of arbitrary magnitude,

limited only by the sample thickness fitting into the inter-

ferometer.

We use a perfect crystal silicon interferometer with 220

Bragg planes and 37.91
 Bragg angle, resulting in a wavelength

of � ¼ 2.36 Å. The sample is 18 mm thick and creates a phase

shift in the order of ’ 465� 2�. A 10�5 effect means a phase

change in the order of 1.7
, which is measurable with care.

3.1. Determining all possible Bragg
diffractions

We locate all possible Bragg diffrac-

tions accessible by our wavelength and

sample alignment angles. We denote the

incident vector by k and the reciprocal-

lattice vector in the sample by H0 with

the Miller indices h; j; l,

k ¼

kx

ky

kz

0
@

1
A; H0 ¼

2�

aSi

h

j

l

0
@

1
A: ð57Þ

The crystal axes are oriented perpendi-

cular to the sample surface [cf. Fig. 6

(c)]. The sample can be rotated by "
around the z axis, then by � around the

new x0 axis and finally (not realized in

the experiment) by � around the y00 axis

[cf. Fig. 6 (a)]. The rotation turns the

reciprocal-lattice vector into

H ¼ Ryð�ÞRxð�ÞRzð"ÞH0 ð58Þ

with the rotation matrices

Rxð�Þ ¼
1 0 0

0 cos � � sin �
0 sin � cos �

0
@

1
A; ð59Þ

Ryð�Þ ¼
cos � 0 � sin �

0 1 0

sin � 0 cos �

0
@

1
A; ð60Þ

Rzð"Þ ¼
cos " � sin " 0

sin " cos " 0

0 0 1

0
@

1
A: ð61Þ

For the accuracy needed here we neglect refraction on the

sample surface and set the wavevector inside the sample equal

to the one outside, K ¼ k. Then Bragg’s law in vector notation

reads kH ¼ H2=2 and

kRyð�ÞRxð�ÞRzð"ÞH0 ¼ 2�2
ðh2
þ j2
þ l2
Þ=a2

Si: ð62Þ

To plot � as a function of " and � we bring the equation into the

form a sin � þ b cos � þ c ¼ 0 and obtain

� ¼ 2 arctan
a� ða2 þ b2 � c2Þ

1=2

b� c

� �
; ð63Þ

a ¼ ðh sin "þ j cos "Þðkz cos � � kx sin �Þ � lky; ð64Þ

b ¼ jky cos "þ lkz cos � þ hky sin "� lkx sin �; ð65Þ

c ¼ ðh cos "� j sin "Þðkx cos � þ kz sin �Þ � ðh2 þ j2 þ l2Þ�=aSi:

ð66Þ

Fig. 7 shows the resulting combinations of " and � (with � ¼ 0)

which satisfy any Bragg condition; Fig. 8 illustrates how some

of the Bragg planes are orientated in the sample. For the given

wavelength of � ¼ 2.36 Å only the plotted reflections 111, 220,

311, 400, 331 (and their crystallographic permutations) can
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Figure 7
Bragg reflections occurring under certain sample alignment angles " and � and � ¼ 2.36 Å. The solid
lines refer to the first beam transit through the sample, the dashed lines to the second transit.



fully satisfy the Bragg condition. They already create quite a

dense net, but the Bragg condition can be violated not only by

angle but also by wavelength. Therefore we have to take even

more reflections into account: 224, 333, 244 . . . .

At " ¼ � ¼ 0 we are several degrees away from any Bragg

condition and that is why we originally chose this crystal

orientation. When we created the sample we already expected

some influence of the Bragg planes but the detailed theory of

the diffractive phase was not yet developed.

3.2. Sample and interferometer

For calculating the diffractive phase [equation (55)] and

contrast loss [equation (56)] for each of the Bragg planes

found above, we have to determine the Bragg deviation �� and

its distribution width ��. They depend on the specific geometry

of the setup. Let a white beam fall onto the interferometer

crystal with horizontal divergence �
 and vertical divergence

� [cf. Fig. 6 (b)]. The beam is Bragg diffracted by the lattice

planes of the interferometer crystal [cf. Fig. 6 (p)]. Thereby the

beam divergence remains the same but the wavelength is set to

� ¼ 2dIFM sin
 and we can write the beam incident on the

sample as

k ¼ k

cos
 cos 
sin
 cos 

sin 

0
@

1
A; k ¼

�

dIFM sin

; ð67Þ

where dIFM denotes the lattice constant of the diffracting

Bragg planes of the interferometer crystal. When the beam

is refracted on the sample surface (with surface normal n)

its component normal to the surface is shortened to

½ðknÞ2 � k2v0�
1=2
’ kn� k2v0=ð2knÞ and the refracted wave-

vector j inside the sample reads

j ¼ k�
v0k2

2kn
n; n ¼

sin "
� cos " cos �
� cos " sin �

0
@

1
A: ð68Þ

We calculate the misset parameter �� [equation (38)] for a

particular set of Bragg planes defined by equation (58).

The distribution width �� is calculated from the four

extreme �� values within the beam divergence ���1�2
¼

��ð
�1 �
;  �2 � Þ,

�� ¼
jjHj

H2
�

1

2
; ð69Þ

�� ¼


�
ð��� ��þþÞ

2
þ ð��� ��þ�Þ

2
þ ð��� ���þÞ

2

þ ð��� ����Þ
2
	
=4

�1=2

: ð70Þ

Alternatively, obtaining virtually the same numerical results,

we can calculate �� by error propagation from a Gaussian

distribution,

�� ¼
@��

@

�


� �2

þ
@��

@ 
� 

� �2
" #1=2

: ð71Þ

For perfect alignment " ¼ � ¼ � ¼ 0 we have

�� ¼

h cot
 cos þ j cos � jðV0md2
IFM=�

2h- 2 cos Þ þ lðsin =sin
Þ
�� ��

2ðh2 þ j2 þ l2ÞdIFM=aSi

�
1

2
ð72Þ

and for  ¼ 0 the distribution width amounts to

�� ¼
aSiðh

2�2

 þ l2�2

 sin2 
Þ1=2

2ðh2 þ j2 þ l2ÞdIFM sin2 

: ð73Þ

3.3. Experiment

The experimental data were collected in May 2011 at the

neutron interferometry setup S18 at the Institute Laue–

Langevin in Grenoble. At that time the detailed theory was

not yet developed and therefore the data are more explorative

than analytical in nature. We scanned the tilt angle � for

several values of rotation angle " and recorded for each

sample orientation a full interferogram with an auxiliary phase

flag. As the sample had been designed to be as thick as

possible it could be rotated and tilted only up to 10
 but it was

enough to access a few Bragg diffractions (cf. Fig. 7).

The observed interference contrast and phase are plotted in

Figs. 9(a) and 9(b), respectively. The contrast shows significant

dips at certain alignment angles which are summarized by the

dots in Fig. 10(a). They fit perfectly to the locations where

Bragg diffraction is expected if we assume a slight misalign-

ment of the sample crystal axes with respect to the sample

surface of �" =�0.2
, �� =�0.3
, �� =�0.6
. The magnitude of

these values agrees very well with the accuracy of the sample

manufacturing. The values are effective values and might also

include a � offset of the sample holder and a small vertical

component of the main beam,  6¼ 0.

Having determined the crystal misalignment angles we

calculate the expected contrast reduction. We calculate the

contribution from all sets of Bragg planes and multiply

them together. Fig. 10(b) shows the resulting contrast in an

"/� map, Fig. 9(a) compares it with the measured data. In
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Figure 8
Illustration of some of the Bragg-plane orientations in the sample.



the latter plot the calculated values have been multiplied by

the intrinsic interferometer contrast (sample-out contrast) of

0.7. A good agreement was found for a beam divergence of �

= 0.1
 and � = 0.2
. In the setup the divergence was defined

by two slits of width � height = 20� 43 and 3� 4 mm,

respectively, in a distance of 1160 mm, giving rise to trape-

zoidal distributions with an FWHM
 = 0.25
 and FWHM =

0.53
. We do not know how to exactly translate these widths

into the Lorentzian � of our model but the agreement seems

reasonably good.
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Figure 9
Calculated values (curves) compared to the experimental data (dots) which have been recorded versus sample tilt � for different rotation angles ". The
interference contrast (a) shows significant dips at the locations of Bragg diffraction (cf. Fig. 10a). The phase (b) shows the typical 1= cos � behaviour. The
deviation from a simple 1= cos � fit is shown by the red dots in (c). The features of the diffractive phase can already be recognized qualitatively. A more
sophisticated data analysis (which requires a good value of the scattering length to be already known, see text) provides a more accurate extraction of the
refractive phase shown by the blue dots.

Figure 10
(a) Location of Bragg reflections in the alignment space of sample rotation " and sample tilt �. The crystal orientation has been slightly adjusted with
respect to the crystal surface (�" = �0.2
, �� = �0.5
, �� = �0.5
) such that the lines of Bragg diffraction pass through the measured points of lowest
contrast (dots). (b) Calculated contrast map. (c) Calculated relative diffractive phase.



The calculated total diffractive phase is shown in Fig. 10(c)

in an "/� map and in Fig. 9(c) in comparison with the experi-

mental data. In a first approach of data evaluation we ignore

the diffractive phase. We fit the measured phase (Fig. 9b) by

the refractive formula

�refð"; �Þ ¼ �ref0

1

cos �

1

2

sin


sinð
þ "Þ
þ

sin


sinð
� "Þ

� �
ð74Þ

given e.g. in Lemmel & Wagh (2010) and then subtract the

measured data from the fit. The result is shown by the red dots

in Fig. 9(c) and already shows some qualitative agreement

with the theory. In a second approach we first subtract the

calculated diffractive phase from the measured phase and then

fit the refractive phase. The difference between the measured

data and this fit is shown by the blue dots and agrees much

better with the theory. In a measurement of the coherent

scattering length, where �ref has to be determined by the fit,

one should iterate this process because �ref is already needed

to calculate �dif.

Because of limited experimental time the intrinsic inter-

ferometer phase (sample-out phase) was not recorded and

subtracted. This means that the phase curves (Fig. 9b) have a

random offset. Only their shape is significant and even that

might have been distorted due to phase drifts induced by the

environment during the measurement process. However, the

positive and the negative � sides have been recorded in

separate runs. First all positive � were recorded for the

different values of ", then all negative sides, taking several

days in total. The fact that the two sides fit nearly seamlessly

together at � ¼ 0 shows that the phase drift was reasonably

small.

4. Discussion

As one can see in Fig. 10 the diffractive effects are quite strong

for some Bragg planes, e.g. 20� 2, and much weaker for other

ones, e.g. 3� 3� 1, which create only a weak shadow in Figs.

10(b) and 10(c). Table 1 compares the influence of the

different Bragg planes on the phase measured at " ¼ � ¼ 0.

The table includes the Bragg-angle deviation �� for conve-

nience although the relevant deviation parameter for the

diffractive phase is ��. If we sum up only the contributions of

the Bragg planes with relatively ‘small’ Bragg-angle devia-

tions, e.g. j��j < 10
, we need only the first four lines of the

table and end up with a diffractive phase of�0.23
. We should

however look at ��, otherwise we would overlook planes

which can only be accessed by a wavelength change. We could

limit ourselves e.g. to j��j < 0.1 and take the first four lines plus
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Table 1
Comparison of the contributions of different sets of Bragg planes to the phase and the contrast measured with the well aligned sample (" ¼ � ¼ 0).

Each line of the table summarizes the effects of several similar sets of planes indicated in the first two columns. The contrast and phase values (last three columns)
are the combined result of these planes, the values of ��, �, �� and �� are averaged. [The individual values of the latter are nearly but not exactly the same due to the
slight misalignment of the crystal axes to the sample surface, i.e. the asymmetry of Fig. 10(a) compared to Fig. 7.] The table is sorted by the modulus of �� which
corresponds to the distance of the curves in Figs. 7 and 10(a) from the centre. �� is undefined for the planes 442, 242 etc. because the corresponding Bragg condition
can only be fulfilled by a shorter wavelength. However, only �� is of importance for the calculation.

Planes of
first transit

Planes of
second transit �� �=H �� �� ð10�3Þ B ð10�6Þ Contrast �rel ð10�6Þ �dif (
)

331, 33�11 3�331, �3331 3.87 0.528 0.0103 0.896 0.256 0.987 102.0 �8.34
202, 20�22 202, 20�22 �4.09 0.814 �0.0471 2.07 1.22 0.993 �107.0 8.80
131, 13�11 1�331, �1131 6.61 0.694 0.0521 0.757 0.442 0.999 34.9 �2.86
400 400 �8.42 0.576 �0.0471 1.31 0.608 0.999 �26.5 2.18
�3311, 3�111 311, 31�11 �14.4 0.694 �0.135 1.54 0.442 1.00 �13.3 1.09
02�22, 022 022, 02�22 �12.0 0.814 �0.145 1.61 1.22 0.999 �33.3 2.73
1�111, �1111 111, 11�11 �16.5 1.33 �0.370 2.76 1.62 1.00 �17.7 1.46
311, 31�11 �3311, 3�111 17.8 0.694 0.123 1.54 0.442 1.00 14.3 �1.17
113, 11�33 �1113, 1�113 �21.0 0.694 �0.206 1.82 0.442 1.00 �8.58 0.705
040 040 �22.2 0.576 �0.145 0.00969 0.608 1.00 �8.31 0.682
�1131, 1�331 13�11, 131 �27.4 0.694 �0.277 0.750 0.442 1.00 �6.33 0.520
313, 31�33 3�113, �3313 �28.1 0.528 �0.139 1.31 0.256 1.00 �7.39 0.606
2�220 220 �31.0 0.814 �0.402 1.30 1.22 1.00 �6.09 0.500
111, 11�11 �1111, 1�111 32.1 1.33 0.577 2.77 1.62 1.00 11.2 �0.923
133, 13�33 1�333, �1133 �34.0 0.528 �0.180 1.05 0.256 1.00 �5.66 0.464
1�113, �1113 113, 11�33 �43.1 0.694 �0.464 1.82 0.442 1.00 �3.82 0.313
220 2�220 45.2 0.814 0.308 1.31 1.22 1.00 7.91 �0.649
�3313, 3�113 313, 31�33 �47.6 0.528 �0.289 1.31 0.256 1.00 �3.56 0.292
�1133, 1�333 133, 13�33 �57.1 0.528 �0.371 1.05 0.256 1.00 �2.75 0.226
004 004 �59.7 0.576 �0.493 1.61 0.608 1.00 �2.46 0.202
�3331, 3�331 331, 33�11 �64.5 0.528 �0.438 0.890 0.256 1.00 �2.35 0.193
422, 42�22 4�222, �4422 0.470 �0.0797 1.02 0.405 1.00 �20.4 1.68
242, 24�22 2�442, �2242 0.470 �0.112 0.693 0.405 1.00 �14.4 1.18
224, 22�44 2�224, �2224 0.470 �0.231 1.16 0.405 1.00 �7.03 0.577
4�222, �4422 422, 42�22 0.470 �0.316 1.02 0.405 1.00 �5.15 0.423
2�442, �2242 242, 24�22 0.470 �0.414 0.689 0.405 1.00 �3.90 0.320
2�224, �2224 224, 22�44 0.470 �0.467 1.16 0.405 1.00 �3.48 0.285
333, 33�33 3�333, �3333 0.443 �0.141 0.922 0.180 1.00 �5.11 0.420
3�333, �3333 333, 33�33 0.443 �0.457 0.920 0.180 1.00 �1.58 0.130
Total 0.976 �146.0 12.0



the 442 line, in which case the diffractive phase would amount

to 1.45
. However, if we sum up all planes listed in the table,

we end up with �dif = 12.0
 (�rel ¼ �1:5� 10�4) without even

getting a clear indication of convergence of the sum. Although

the additional contributions become smaller and smaller,

nearly all of them have the same sign and push �dif to an

increasingly larger value. As a result we get a phase offset

which is constant over the angular range of the alignment

scans and which cannot be distinguished experimentally from

the refractive phase itself (cf. Fig. 9c). Consequently, the

precision of the scattering-length measurement depends

crucially on the reliability of the theoretical calculation. Our

calculation is based on the incoherent sum of two-beam cases

which is strictly speaking only correct for combining the first

and the second sample transit. Within each transit the

contributions of all Bragg reflections should be added coher-

ently, requiring an n-beam case of dynamical diffraction with n

in the order of 10. Such a calculation for arbitrary Bragg-plane

orientations and large Bragg-angle deviations is quite chal-

lenging. As a first step in future work we aim to investigate the

three-beam case, to get at least an idea of the magnitude of the

cross terms.

However, phase corrections in the order of <� 10�4 are not

totally unexpected. The phase formula [equation (1)],

� ¼ ��NbcD, follows from the kinematic scattering theory as

well as from the one-beam approximation of the dynamical

theory. In both cases multiple scattering is neglected. A more

rigorous model has been developed by Sears (1982, 1985) for

isotropic media (liquids, gases) yielding two correction terms:

� ¼ ��NbcD 1þ J0 þ
�2Nbc

4�

� �
: ð75Þ

J0 is the local field correction which takes multiple scattering

into account and the �2 correction term originates from diffuse

scattering. If we assume silicon to be isotropic, i.e. a liquid with

the number density of the real crystal, then J0 would be in the

order of 10�5 and the �2 term in the order of 10�6. J0 can be

positive or negative depending on the wavelength and the

nearest-neighbour distance in the liquid. Our calculation for

the single crystal of silicon uses the theory of dynamical

diffraction which already includes multiple scattering in its

fundamental equations, since the Schrödinger equation of the

neutron is solved on the periodic potential of the whole

crystal. An n-beam approximation with n<1 reduces the

completeness such that only certain multiple scattering

processes are taken into account. Nevertheless a remaining

correction term equivalent to the local field correction should

be expected, except for the one-beam case. Fig. 11 shows our

calculated phase correction for a wide range of crystal orien-

tations. Again the Bragg condition lines of Fig. 7 are repro-

duced. The rather constant regions between the lines have

varying values of positive or negative sign (red and blue,

respectively). As for the isotropic model, there is no constant

correction term for the whole sample but only for a specific

experimental situation depending on the incident beam and

the spatial configuration of the scatterers.

5. Summary and conclusion

Based on the dynamical diffraction theory of neutrons, we

have comprehensively worked out the two-beam case for

arbitrary Bragg-plane orientations and arbitrary deviations

from the Bragg condition (for non-absorbing materials). We

investigated the influence of Bragg diffraction on the phase of

the transmitted beam and furthermore on the interference

contrast in a neutron interferometry measurement. The theory

agrees very well with experimental data. If scattering-length

measurements are performed on single-crystal samples the

crystal orientation has to be chosen carefully so that the beam

direction is at least a few degrees away from any Bragg

condition.

Open questions remain as concerns high-precision

measurements. If the phase can be measured with 10�4 or

higher accuracy, the diffractive phase is non-negligible for

Bragg-angle deviations of up to several degrees. In this regime

there are always several Bragg reflections within reach. All

Bragg planes together create a non-vanishing correction to the

refractive phase which we interpret as a local field effect.

Further work on the n-beam case is necessary to confirm that

our method of incoherently summing up the individual two-

beam cases is an accurate approximation.

APPENDIX A
Exact solution of the two-beam case

We derive the exact solution of the two-beam case for arbi-

trary Bragg-plane orientation and arbitrarily large deviations

from the Bragg condition. The geometry is illustrated in Fig.
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Figure 11
Relative diffractive phase calculated for a wide range of crystal
orientation angles. The sample surfaces are kept constant (" ¼ � ¼ 0)
but the inner crystal structure is rotated by �" and ��. The colour shading
is the same as in Fig. 10(c). The lower left part of the map covers the
angular range of Fig. 7.



12. We assume a crystal slab with parallel surfaces perpendi-

cular to the z axis and with thickness D. The reciprocal-lattice

vector H lies in the x=z plane. Any y component of the inci-

dent wavevector k can be ignored, as it is neither affected by

the crystal surface (being tangential) nor by the lattice planes

(being perpendicular to H). Thus all wavevectors also lie in the

x=z plane.

There are four wavevectors leaving the crystal (Fig. 12): the

surface reflected component kS, the transmitted component

kT, the diffracted component kB exiting on the front surface

(Bragg case) and the diffracted component kL exiting on the

back surface (Laue case). In principle both Bragg and Laue

components appear simultaneously if surface reflection is

taken into account. For example, in the Laue case a small

component is reflected on the back surface of the crystal,

travels back to the front surface and leaves the crystal with kB,

kS ¼
kx

�kz

� �
; kT ¼

kx

kz

� �
; ð76Þ

kB ¼
kx þHx

�kLz

� �
; kL ¼

kx þHx

kLz

� �
; ð77Þ

kLz ¼ ½k
2 � ðkx þHxÞ

2
�
1=2: ð78Þ

The components of these vectors follow from the fact that the

x component is preserved on all surfaces and can be changed

only by Hx inside the crystal. The z component is actually split

into different parts inside the crystal (see next section) but for

a crystal slab with parallel surfaces they always recombine to a

single component outside the crystal (Batterman & Cole,

1964). The z component can be inverted on either surface,

therefore kBz ¼ �kLz, and the energy has to be conserved,

giving the value of kLz [equation (78)].

A1. K vectors inside the crystal

The basic equation of the two-beam case is the quartic

equation given by equation (5). Its graphical representation is

the well known dispersion surfaces shown in Fig. 13. Here we

solve the quartic equation analytically (Dickson, 1914 and

WolframMathWorld, http://mathworld.wolfram.com/Quartic

Equation.html). Brought into the form

0 ¼ K
4

z þ a3K
3

z þ a2K
2

z þ a1Kz þ a0; ð79Þ

a3 ¼ 2Hz; ð80Þ

a2 ¼ H
2
þ 2Hxkx � 2�2

z ¼ H
2

z � k
2

Lz þ v0 � �
2
z; ð81Þ
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Figure 12
The wavevectors inside and outside the crystal for the asymmetric Laue
case (a) and asymmetric Bragg case (b), calculated for V0=E ¼ 0:09.

Figure 13
Graphical solution of equation (5) in reciprocal space, plotted for
V0=E ¼ 0:09. The dispersion surfaces (black) approach circles (thin lines)
around 0 and H and represent all possible values of K and KH allowed by
the Schrödinger equation in the two-beam case. The solutions (coloured)
for a particular incident vector k (black) are given by the intersection
points of the dispersion surface and the surface normal through the vector
k’s tail. k’s tip always points to 0. Part (a) shows the Laue case, (b) the
Bragg case. Part (b) shows both the situation of exact Bragg compliance
�� ¼ 0 (solid lines) and misalignment by �� = 6
 (dashed lines). The
former has only two real solutions (red and blue). The other two solutions
are complex, leading to total reflection.



a1 ¼ �2Hz�
2
z; ð82Þ

a0 ¼ ��
2
z H

2
þ 2Hxkx � �

2
z

� �
� jvHj

2
ð83Þ

¼ ��2
z H

2

z � k
2

Lz þ v0

� �
� jvHj

2; ð84Þ

it has the following four solutions:

Kz ¼

�b3 �1 ðgþ uÞ1=2

�2 f2g� u�1 ½f=ðgþ uÞ1=2
�g

1=2; gþ u 6¼ 0;

�b3 �2 ½3g�1 ðf0Þ
1=2
�
1=2; gþ u ¼ 0;

ð85Þ

b0 ¼
a0

4
; b1 ¼

a1

8
; b2 ¼

a2

12
; b3 ¼

a3

4
; ð86Þ

g ¼ �2b2 þ b2
3; ð87Þ

f ¼ �2b1 þ b3ð6b2 � 2b2
3Þ; ð88Þ

f0 ¼ �4b0 þ ð6b2 � 2b2
3Þ

2; ð89Þ

u ¼ ½v� ðv2 � w3Þ
1=2
�
1=3
þ ½vþ ðv2 � w3Þ

1=2
�
1=3

ð90Þ

¼ ½v� ðv2
� w3
Þ

1=2
�
1=3
þ

w

½v� ðv2 � w3Þ
1=2
�
1=3
; ð91Þ

v ¼ b3
2 � b2ðb0 þ b1b3Þ þ

1
2 ðb

2
1 þ b0b2

3Þ; ð92Þ

w ¼ b2
2 þ

1
3 ðb0 � 2b1b3Þ: ð93Þ

The solutions are shown in Fig. 14 for different parameters.

The two independent plus–minus signs �1 and �2 in equation

(85) create the four different solutions. To get continuous

functions for Kzð	Þ we do not assign fixed numbers to certain

plus–minus branches. Instead we sort the solutions by their

real value. Otherwise e.g. the red and the green curves in

Fig. 14(b) would exchange their values in the range

0<	 <� 35
. Every quartic equation (79) with real parameters

an has at least two real solutions, in our case Kz1 and Kz4.

These solutions lie on the outer dispersion surface in Fig. 13.

The other two solutions might become complex, in which case

they are complex conjugates. This corresponds to the total

reflection of the Bragg case where there is no intersection

between the surface normal and the inner dispersion surface

(cf. Fig. 13b). The imaginary part is plotted with dashed lines

in Fig. 14.

We checked the numerical stability of equations (85)–(93)

by feeding the calculated values of Kz for the silicon sample

into numerical ‘root polishing’ algorithms for polynomial

equations (Press et al., 2002). These algorithms (e.g. Laguerre’s

method) change the given root value by trial and error until

the original equation is best fulfilled. The roots slightly

changed their values by j�Kz=Kzj<� 10�9. We used a PC with

80 bit floating-point accuracy, i.e. 64 bit mantissa or about 19

significant decimal digits.

The solutions of the quartic equation of the form in equa-

tion (79) fulfil certain relations known as Vieta’s formulas

(WolframMathWorld). We will need them later on to simplify

results.
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Figure 14
Solutions Kz1 to Kz4 as a function of the lattice-plane orientation 	. The
incidence vector is adjusted accordingly to always fulfil the Bragg
condition in plots (a) and (b) and to be off-Bragg by 6
 in plot (c). Plot (a)
is calculated for a real silicon sample where some solutions are so close to
each other that they cannot be distinguished in the plot. Plots (b) and (c)
are calculated for a hypothetical material with much stronger neutron
potential to illustrate the qualitative behaviour of the solutions. Non-
vanishing imaginary parts are shown by dashed lines.
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Kz1 þ Kz2 þ Kz3 þ Kz4 ¼ �a3; ð94Þ

Kz1Kz2 þ Kz1Kz3 þ Kz1Kz4

þ Kz2Kz3 þ Kz2Kz4 þ Kz3Kz4 ¼ a2; ð95Þ

Kz1Kz2Kz3 þ Kz2Kz3Kz4

þ Kz3Kz4Kz1 þ Kz4Kz1Kz4 ¼ �a1; ð96Þ

Kz1Kz2Kz3Kz4 ¼ a0: ð97Þ

Further useful equations can be drived from Vieta’s formulas.

K
2

z1 þ K
2

z2 þ K
2

z3 þ K
2

z4 ¼ �2a2 þ a2
3; ð98Þ

ðK
2

z1 � �
2
zÞðK

2

z2 � �
2
zÞðK

2

z3 � �
2
zÞðK

2

z4 � �
2
zÞ ¼ jvHj

4; ð99Þ

ðKz1 þ kzÞðKz2 þ kzÞðKz3 þ kzÞðKz4 þ kzÞ

¼ ðHz � kzÞ
2
� k

2

Lz

h i
v0 þ v2

0 � jvHj
2: ð100Þ

A2. Amplitudes

Having determined all wavevectors we can make an ansatz

for the wave functions in the three sections before, inside and

behind the crystal slab.

 I ¼ expðikrÞ þ b expðikBrÞ þ s expðikSrÞ; z � 0; ð101Þ

 II ¼
P4

n¼1

un expðiKnrÞ þ uHn exp½iðKn þHÞr�

 �

; 0 � z � D;

ð102Þ

 III ¼ t expðikrÞ þ l expðikLrÞ; D � z: ð103Þ

t and s denote the transmitted and surface-reflected ampli-

tudes, respectively, b and l the diffracted amplitudes for the

Bragg and Laue cases, respectively (cf. Fig. 12). un and uHn

denote the eight amplitudes inside the crystal. As uHn can be

expressed by un using equation (2)

uHn ¼ un ð�
2
z � K

2

znÞ=v�H ð104Þ

there remain eight unknown quantities: s, b, t, l, u1, u2, u3, u4.

We have four matching conditions on the surfaces:

 I ¼  IIjz¼0; @z I ¼ @z IIjz¼0; ð105Þ

 II ¼  IIIjz¼D; @z II ¼ @z IIIjz¼D: ð106Þ

These equations are sufficient because each of them splits into

two independent parts. For example,  I ¼  IIjz¼0 gives

1þ s�
P

n

un


 �
þ expðiHxxÞ b�

P
n

uHn

� �
¼ 0: ð107Þ

To be valid for all x the braced and the bracketed terms have

to vanish independently, giving two equations. Linear combi-

nation of all eight equations gives the following simplified

system of equations, using the abbreviations

�2
n ¼ �

2
z � K2

zn; �2
n ¼ �

2
n=k2; ð108Þ

k�n ¼ kz � Kzn; k
�

n ¼ k�n =k; ð109Þ

h� ¼ Hz � kLz; h
�
¼ h�=k; ð110Þ

h�n ¼ Hz � kLz þ Kzn; h
�

n ¼ h�n =k; ð111Þ

1 1 1 1 �1 0 0 0

Kz1 Kz2 Kz3 Kz4 kz 0 0 0

K
2

z1 K
2

z2 K
2

z3 K
2

z4 ��2
z v�H 0 0

K
3

z1 K
3

z2 K
3

z3 K
3

z4 kz�
2
z �v�Hh

þ
0 0

expðiDKz1Þ expðiDKz2Þ expðiDKz3Þ expðiDKz4Þ 0 0 � expðiDkzÞ 0

expðiDKz1ÞKz1 expðiDKz2ÞKz2 expðiDKz3ÞKz3 expðiDKz4ÞKz4 0 0 � expðiDkzÞkz 0

expðiDKz1ÞK
2

z1 expðiDKz2ÞK
2

z2 expðiDKz3ÞK
2

z3 expðiDKz4ÞK
2

z4 0 0 � expðiDkzÞ�
2
z expðiDh�Þv�H

expðiDKz1ÞK
3

z1 expðiDKz2ÞK
3

z2 expðiDKz3ÞK
3

z3 expðiDKz4ÞK
3

z4 0 0 � expðiDkzÞkz�
2
z � expðiDh�Þv�Hh

�

0
BBBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCCA

�

u1

u2

u3

u4

s

b

t

l

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
¼

1

kz

�2
z

kz�
2
z

0

0

0

0

0
BBBBBBBBBBBBB@

1
CCCCCCCCCCCCCA
: ð112Þ

The many vanishing matrix elements allow us to easily eliminate s; b; t; l leaving four equations for un:
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k
þ

1 k
þ

2 k
þ

3 k
þ

4

�h
þ

1 �
2
1 �h

þ

2 �
2
2 �h

þ

3 �
2
3 �h

þ

4 �
2
4

expðiDKz1Þk
�

1 expðiDKz2Þk
�

2 expðiDKz3Þk
�

3 expðiDKz4Þk
�

4

expðiDKz1Þh
�

1 �
2
1 expðiDKz2Þh

�

2 �
2
2 expðiDKz3Þh

�

3 �
2
3 expðiDKz4Þh

�

4 �
2
4

0
BB@

1
CCA

u1

u2

u3

u4

0
BB@

1
CCA ¼

2kz

0

0

0

0
BB@

1
CCA: ð113Þ

The solution is

u1

u2

u3

u4

0
BBB@

1
CCCA ¼ 2kz

N

0 g34 g42 g23

g43 0 g14 g31

g24 g41 0 g12

g32 g13 g21 0

0
BBB@

1
CCCA

h
þ

1 �
2
1

h
þ

2 �
2
2

h
þ

3 �
2
3

h
þ

4 �
2
4

0
BBBB@

1
CCCCA; ð114Þ

g�	 ¼ exp½iDðKz� þ Kz	Þ� h
�

� �
2
�k
�

	 � h
�

	 �
2
	k
�

�

� �
;

ð115Þ

N ¼
P
ð�	
�Þ

g�	 h
þ

� �
2
�k
þ


 � h
þ


 �
2

k
þ

�

� �
; ð116Þ

ð�; 	; 
; �Þ 2 fð1; 2; 3; 4Þ; ð1; 3; 4; 2Þ; ð1; 4; 2; 3Þ;

ð2; 3; 1; 4Þ; ð2; 4; 3; 1Þ; ð3; 4; 1; 2Þg: ð117Þ

Using lines 1, 3, 5 and 7 in equation (112) we determine s, b, t, l

from un:

s ¼ �1þ
X4

n¼1

un; b ¼
1

v�H

X4

n¼1

�2
nun; ð118Þ

t ¼
X4

n¼1

expð�iDk�n Þun; l ¼
1

v�H

X4

n¼1

�2
n expðiDh�n Þun:

ð119Þ

We insert un [equation (114)] and simplify the result using

Vieta’s formulas [equations (94)–(99)] and the original quartic

equation (5).

s ¼
1

N

X
ð�	
�Þ

g�	 h
þ

� �
2
�k
�


 � h
þ


 �
2

k
�

�

� �
; ð120Þ

b ¼
2kz

Nv�H

X
ð�	
�Þ

g�	 Kz� � Kz


� �
�2

�

2
�; ð121Þ

t ¼
�2kz

N
exp½�iDð2Hz þ kzÞ�

X4

n¼1

expð�iDKznÞBnðh
þ

n Þ
2�2

n;

ð122Þ

l ¼
2kzvH

N
exp½�iDðHz þ kLzÞ�

X4

n¼1

expð�iDKznÞBnh
þ

n k
þ

n ;

ð123Þ

B1 ¼ ðKz2 � Kz3ÞðKz3 � Kz4ÞðKz4 � Kz2Þ; ð124Þ

B2 ¼ ðKz1 � Kz4ÞðKz4 � Kz3ÞðKz3 � Kz1Þ; ð125Þ

B3 ¼ ðKz1 � Kz2ÞðKz2 � Kz4ÞðKz4 � Kz1Þ; ð126Þ

B4 ¼ ðKz1 � Kz3ÞðKz3 � Kz2ÞðKz2 � Kz1Þ: ð127Þ

As a first quality test of the results we check whether the

neutron flux is conserved. We have set the amplitude of the

incident plane wave to unity, so the intensity entering through

a surface unit area is given by I0 ¼ 1= cos 
 with the incident

angle 
 (cf. Fig. 12). The transmitted and the surface reflected

components are exiting under the same angle with the inten-

sities IS ¼ jsj
2= cos 
 and IT ¼ jtj

2= cos 
, respectively. The two

diffracted components exit under 
L with the intensities

IB ¼ jbj
2= cos 
L and IL ¼ jlj

2= cos 
L, respectively. The rela-

tion of flux conservation reads IS þ IB þ IT þ IL ¼ I0 or

jsj2

cos 

þ
jbj2

cos 
L

þ
jtj2

cos 

þ
jlj2

cos 
L

¼
1

cos 

: ð128Þ

The computed result is IS þ IB þ IT þ IL � I0
<
� 10�4 I0 and

with numerically polished Kz values <� 2� 10�8 I0 . Only close

to the transition between the Bragg and Laue cases, i.e. at

grazing exit angles, do the formulas seem to be numerically

unstable, as the conservation of intensity is violated by 10%.

The instability is probably related to the infinite slope of Kz2;3

in Fig. 14(b) at the Bragg/Laue boundary and could be solved

only by a parameterization other than Kz in the original

equation (79).

The exponential terms in equation (115) can diverge

numerically if the values of Kz become complex. To avoid

numerical errors we created a C++ class consisting of three

long double values a; b; x such that each complex number can

be represented by ðaþ ibÞ expðxÞ. The exponential term is

Figure 15
Transmitted (t) and diffracted (b; l) intensities versus Bragg-plane
orientation 	, calculated for a 1 mm thick silicon sample and 220 Bragg
planes. The surface reflected intensity is in the order of 10�6 and not
visible in the plot. In (a) the Bragg condition is exactly fulfilled. In the
Bragg range the intensity is totally reflected, while in the Laue range the
typical Pendellösung oscillations between transmitted and diffracted
beam are visible. In (b) the incident angle is off-Bragg by 0.0005
 or about
three Darwin widths. For 	 <� �32
 and 	 >� 150
 no diffraction occurs
because the reciprocal-lattice vector H as defined by equation (58) points
into the wrong direction.



preserved as long as arithmetic operations allow it. This way

the exponential terms in the denominator and numerator of

s; b; t; l finally cancel.

Fig. 15 shows the calculated intensities for a silicon sample.

Another test is the comparison with the formulas in equa-

tions (19), (20) and (29), (30) of the symmetric cases. The

agreement for the silicon sample is jabsðtÞ � absðtsymÞj
<
� 10�6jtj and j argðtÞ � argðtsymÞj<� 10�72�. A better agree-

ment cannot be expected since the symmetric formulas do not

take surface reflection into account.

Fruitful discussions with Claudio Ferrero, Jean-Pierre

Guigay, Erwin Jericha and Helmut Rauch are gratefully

acknowledged.
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